您当前的位置 : 首页 > 科技 > 正文

企业数据治理所面临的挑战

2019-10-31 21:27:15

每年随着数据量的增长,大数据平台需要投资扩容,但大量的存量应用依赖的数据也在同步增长,因此也需要扩容,当然这份冗余的数据会越来越大,

因此,所以能实施一次数据治理,往往是数据的问题已经在公司层面显性化的暴露出来,在降本增效这个大背景下,很多公司是有数据治理的驱动力的,毕竟节省的是真金白银。

现实中,我们大量的数据治理活动都是小组级、部门级的,跟数据产品,数据变现,智慧运营这些工作相比,重要程度实际是偏低的。

由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理在现在得以被重视的重要原因。在业务 IT 化的过程中,企业通过第三方厂商、自研等方式构建多种数据系统,采用多种系统中的数据化治理,是实现数据效能、数据驱动业务的关键步骤。

早期,企业用信息技术去构建业务流,而现在,我们试图用信息技术,特别是互联网行业中的一些大数据处理以及分布式处理技术构建数据流,但在构建过程中,过多强调技术本身而忽视了对数据的治理。

数据治理是整体性问题,并非仅是技术问题,市面上数不胜数的商业组件可以解决如何对数据进行存储、查询等问题,但是在实际的业务情况下对于数据治理这样一个系统性工程,目前却并无现成的产品或技术可以直接解决。

构建数据流的过程,很大意义上是为了解决分布在 IT 系统里各个不同子系统之间的数据孤岛问题,用一条完整的数据流将不同子系统之间的数据孤岛打通,同时应用于不同的应用场景,这个打通的过程,就是某种意义上的数据治理。这也反映了我之前尤为推崇的一个观点——构建数据仓库本身就是一个数据治理的过程。

另外,对于数据的本质,我一直推崇如下两个定义,第一“信息是用来消除不确定性的”,第二“大数据的本质,就是用信息来消除不确定性”。同样,对于数据驱动在业务决策和产品智能两大方面的应用,也都将建立在数据治理的基础上才有意义。

睿治数据治理平台是亿信华辰完全自主研发的、开创性的、一站式综合数据治理整体解决方案。睿治是全国唯一实现了数据治理场景全覆盖的突破性产品,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,以创新的方式保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,全面为客户量身打造符合自身特征的数据治理体系。

睿治始终站在国内顶尖梯队,广泛应用了MQ、分布式计算、zookeeper等最新技术。同时引领国内行业发展趋势:

1、数据质量自动探查,内置常规数理统计算法支持绑定机器学习算法;

2、数据关系智能构建,基于存储过程、sql、数据库定义,自动理解数据之间的关系;

3、资产目录主动感知,活化更新等先进技术,确保成为当之无愧的领头羊。

关于我们 | 网站地图
今日甘南   版权所有 Copyright(C)2005-2019